
laika Documentation
Release 1.4.0

Jul 12, 2021

Contents

1 Installation 3

2 Usage 5
2.1 Arguments . 5

3 Testing 7

4 Documentation Contents 9
4.1 Configuration . 9
4.2 Reports . 11
4.3 Results . 21
4.4 Reports templating . 26

i

ii

laika Documentation, Release 1.4.0

laika is a business reporting library that allows you to request data from different sources and send it to someone or
save it at some destination. For example: you can query your database, send the result as an excel attachment via email
and save it on Google Drive or Amazon S3.

Check out the documentation at readthedocs.

Laika was tested on Python 2.7 and 3.5 or higher.

Contents 1

http://laika.readthedocs.io/en/latest/index.html

laika Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Installation

You can install it directly using pip:

$ pip install laika-lib

You can specify extra dependencies. To find out what dependencies you need to install, check out configuration docs.
For example, to install libraries to use Google Drive and Amazon S3 in your reports you must run:

$ pip install laika-lib[drive, s3]

3

laika Documentation, Release 1.4.0

4 Chapter 1. Installation

CHAPTER 2

Usage

laika.py is a script that lets you use laika library. You can run it like this:

$ laika.py some_report

This command will run the report named some_report. This report must be defined in some configuration file. By
default laika looks for config.json in the same directory. You can specify a custom config passing -c parameter:

$ laika.py -c my_config.json

Path to configuration file can also be specified with the LAIKA_CONFIG_FILE_PATH environment variable:

$ export LAIKA_CONFIG_FILE_PATH='/home/me/my_config.json'
$ laika.py my_report

Another parameter you can use is --pwd which serves for specifying working directory. It can also be specified in
configuration file or LAIKA_PWD environment variable.

2.1 Arguments

You can check all the predefined laika.py arguments with --help.

Undefined arguments will be added to report’s definition overwriting default values. Thus, if for example the configu-
ration for my_report defines field my_field with value foo, if you execute it like this:

$ laika.py my_report --my_field bar

my_field configuration will contain bar as value.

The argument variables can also be overwritten, but it requires a valid json:

$ laika.py my_report --variables '{"bar": "foo"}'

You can also overwrite Global configuration via command line arguments.

5

laika Documentation, Release 1.4.0

6 Chapter 2. Usage

CHAPTER 3

Testing

To run test, you must install test dependencies:

$ pip install laika-lib[test]

Then, run test from laika directory:

$ cd path/to/laika
$ python -m unittest discover

7

laika Documentation, Release 1.4.0

8 Chapter 3. Testing

CHAPTER 4

Documentation Contents

4.1 Configuration

Laika reads reports definitions from a json file which must have this structure:

{
"include": [...],
"profiles": [...],
"connections": [...],
"reports": [...]

}

The configuration can be separated in multiple files. In this case there must be a base configuration file that will have
to include the other files via "include" field with a list of paths:

"include": [
"another_config.json",
"/some/config.json"

]

These files will be included in the configuration. The only constraint is they can only have reports, connections
and profiles fields defined.

You can check the example configuration file for more information.

4.1.1 Profiles

Profiles are all kind of credentials used for accessing external APIs (like Google Drive). You can specify that creden-
tials are defined in a file via credentials key:

{
"name": "my_drive",

(continues on next page)

9

config.json

laika Documentation, Release 1.4.0

(continued from previous page)

"credentials": "secret.json"
}

In this case credentials is path to a file, but file’s format depends on each type of report or result. For example
email credentials are defined in json format like this:

{
"username": "me@gmail.com",
"password": "secret"

}

Other option is to define them in an enviroment variable. By default, laika will search for credentials in
LAIKA_CREDENTIALS_<profile> enviroment variable, where <profile> is the uppercased name of the pro-
file. Or you can specify your own enviroment variable through env_variable key. For example, given this profile
definition:

{
"name": "my_profile"

}

Laika will look for credentials in LAIKA_CREDENTIALS_MY_PROFILE. So if the profile you’re using is that for
email result, make sure you defined this environment variable like that:

$ export LAIKA_CREDENTIALS_MY_PROFILE = '{"username": "me@gmail.com", "password":
→˓"secret"}'

And with this definition:

{
"name": "my_profile",
"env_variable": "CUSTOM_VARIABLE"

}

Laika will take the credentials from CUSTOM_VARIABLE enviroment variable.

4.1.2 Connections

Connections are used to access data sources or destinations. They must have a name and a type, and a set of specific
fields. Currently supported connections are described below.

Database

Database connection examples:

Postgres

{
"name": "local",
"type": "sqlalchemy",
"constring": "postgresql://user@localhost:5432/database"

}

Presto

10 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

{
"name": "local",
"type": "sqlalchemy",
"constring": "presto://user@localhost:8889/default"

}

Email

Example of a smtp connection:

{
"name": "gmail_smtp",
"type": "email",
"host": "smtp.gmail.com",
"port": 587

}

Ftp

Example of a ftp connection:

{
"name": "some_ftp",
"type": "ftp",
"host": "ftp.home.com"

}

4.1.3 Global configuration

In addition to reports, connections and profiles you can define this configurations:

• now: string with a datetime to use as current datetime. Useful if your reports or results make use of templating
to depend on dates relative to current date. Must match %Y-%m-%d %H:%M:%S format.

• timezone: string of timezone to use. By default all the dates will be generated in UTC. You can overwrite it for
each particular report.

• pwd: directory, to which laika will change before executing reports. In this directory it will, for example, read
query files, or save file results (if relative path is specified).

These configurations can be overwritten via command line arguments:

$ laika.py my_report --now "2018-11-12 00:00:00"

4.2 Reports

Reports are defined as json objects that must define these fields:

• name: this name will be used to execute the report through cli.

• type: report’s type. Supported report types are defined below.

• results: list of results configuration that define how to save the reports (Results documentation).

4.2. Reports 11

laika Documentation, Release 1.4.0

• Set of required or optional fields that are detailed below.

4.2.1 File

type: file. This report reads the data from local file. These are the configurations:

• filename: path to the file. Laika parses the file based on it’s extension. csv and tsv files are parsed out of the box.
To parse excel files, you need to install laika-lib[excel] dependency.

• raw: if this parameter is set to true, file’s extension will be ignored and file contents will be passed to result
unparsed.

Example of a file report:

{
"name": "my_file_report",
"type": "file",
"filename": "/path/to/filename.xlsx",
"results": [

]
}

4.2.2 Query

Note: To use query report you must install sql dependency (for Sqlalchemy): pip install
laika-lib[sql]. You also have the libraries needed to access your specific database.

For postgres: pip install laika-lib[postgres]

For Presto(Pyhive): pip install laika-lib[presto]

We only tested it with postgres and Presto, but it should work with all databases supported by SQLAlchemy.

type: query. This report runs a query to some database. Should work with any database supported by
Sqlalchemy but right now it’s only tested with PostgreSQL and Presto. These are the configurations:

• query: sql code to execute.

• query_file: path to a file that contains plane sql code. Will be ignored if query is specified.

• connection: name of the connection to use.

• variables: A dictionary with values to replace in query code. You can find further explanation in Query templat-
ing.

Example of a query report:

{
"name": "my_shiny_query",
"type": "query",
"query_file": "/my/dir/query.sql",
"connection": "local",
"variables": {
"foo": "bar"

},
"results": [

(continues on next page)

12 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

(continued from previous page)

]
}

4.2.3 Bash Script

type: bash. This report executes a bash command and reads it’s output. You can interpret this report as the
read_output part of this example:

$ bash_script | read_output

These are the configurations:

• script: command to execute

• script_file: path to the file with bash script to execute. If script is defined, this field will be ignored.

• result_type: type of output data format. Can be csv, json or raw. In case of raw, the content will not be converted
and will be passed as is to the result. The explanation of json format is explained below.

Example bash script report:

{
"name": "some_bash_script",
"type": "bash",
"script_file": "some_script.sh",
"result_type": "json",
"results": [

]
}

Bash Script json format

Json data will be converted to a pandas dataframe using pd.read_json function (Docs). These are some examples
of the formats it accept:

Example 1 (all arrays must have the same size):

{
"column_1": ["data_row_1", "data_row_2", "data_row_3"],
"column_2": ["data_row_1", "data_row_2", "data_row_3"]

}

Example 2:

[
{
"column_1": "data_row_1",
"column_2": "data_row_1",
"column_3": "data_row_1",

},
{
"column_1": "data_row_2",
"column_3": "data_row_2"

(continues on next page)

4.2. Reports 13

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html

laika Documentation, Release 1.4.0

(continued from previous page)

}
]

4.2.4 Download From Google Drive

Note: To use drive report you must install drive dependency: pip install laika-lib[drive]

type: drive. This report downloads a file from Google Drive. It uses file parsing logic from the File report.

Configuration:

• profile: Name of the profile to use. Credentials must be ones of a service account with access to Google Drive’s
API.

• grant: email of a grant account, in the name of which the document will be downloaded. Grant must have access
to specified folder.

• filename: name of the file to download.

• folder: directory in which the report will search for the specified file.

• folder_id: google drive’s id of the above folder. If specified, folder option is ignored. It’s useful if there is more
than one folder with the same name.

• subfolder: optional, if specified, this report will look for a subfolder inside a folder and, if found, will look there
for filename. In other words, it will look for this structure: <folder>/<subfolder>/<filename>

• file_id: google drive’s id of the file to download. If specified, all other file options are ignored.

• drive_id: shared drive’s id in case the file is in a shared drive.

• start_timeout, max_timeout, retry_status_codes: drive API calls sometimes fail with 500 errors. To work around
this behaviour, in case of error the call is retried after waiting start_timeout (2 by default) seconds, doubling
the waiting time after each error until reaching max_timeout (300 by default). If the error persists after that, the
exception will be raised. retry_status_codes is a list of extra status codes to retry after, [429] by default (429
is “too many requests”).

Example of a drive report:

{
"type": "drive",
"profile": "drive_service_account",
"grant": "me@mail.com",
"folder_id": "my_folder_id",
"folder": "TestFolder",
"subfolder": "TestSubFolder",
"file_id": "my_file_id",
"filename":"file_to_download.xlsx"

}

4.2.5 Download From S3

Note: To use S3 report you must install s3 dependency: pip install laika-lib[s3]

14 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

type: s3. This report downloads a file from Amazon S3. It uses file parsing logic from the File report. In order
to use this report, you have to install boto3.

Configuration:

• profile: Name of profile to use (laika profile, no to confuse with aws profiles). Credentials file of the specified
profile must contain data to be passed to Session constructor. Example of a minimal aws credentials file for
laika:

{
"aws_access_key_id": "my key id",
"aws_secret_access_key": "my secret access key"

}

• bucket: s3 bucket to download the file from.

• filename: File to download. This config is the key of the file in bucket.

Example of a s3 report:

{
"name": "s3_report_example",
"type": "s3",
"profile": "my_aws_profile",
"bucket": "some.bucket",
"filename": "reports/custom_report.csv",
"results": [

]
}

4.2.6 Redash

type: redash. This report downloads query result from redash API. These are the configurations:

• redash_url: the url of your redash instance.

• query_id: id of the query to download. You can get from the query’s url, it’s last part is the id (for example, for
https://some.redash.com/queries/67, 67 is the id).

• api_key: token to access the query, either for user or for query. You can find user’s token in the profile, token
for query can be found in the source page.

• refresh: True if you want an updated report. Important: For refresh to work the api_key must be of user type.

• parameters: Dictionary of query parameters. They should be written as they are defined in the query, without
p_ prefix. You can use Filenames templating on the values.

Example of a redash query:

{
"name": "some_redash_query",
"type": "redash",
"api_key": "some api key",
"query_id": "123",
"redash_url": "https://some.redash.com",
"refresh": true,
"parameters": {

"hello": "world"

(continues on next page)

4.2. Reports 15

http://boto3.readthedocs.io/en/latest/guide/quickstart.html#installation
http://boto3.readthedocs.io/en/latest/reference/core/session.html#boto3.session.Session
https://redash.io/

laika Documentation, Release 1.4.0

(continued from previous page)

},
"results": [

]
}

4.2.7 Adwords

Note: To use adwords report you must install adwords dependency: pip install laika-lib[adwords]

type: adwords. This report is generated by Google Adwords API. To use it, you will need to install googleads.
The configurations are:

• profile: Name of profile to use. Credentials file is a .yaml, you can find out how to generate it in adwords API
tutorial.

• report_definition: the definition of the report which will be passed to DownloadReport method of googleads
API. You will normally define fields reportName, dateRangeType, reportType, downloadFormat,
selector, but these will vary depending on the report type.

• reportName: In order not to repeat reports definitions, you can specify this name and reuse the definition. In
other words, you can have multiple reports with the same name, but only one report_definition, which will be
used for all of them.

• dateRangeType: if you use report_definition from another report, you can overwrite date range it uses with this
configuration. Here you can read more about date range types you can chose from.

• date_range: if dateRangeType is set to CUSTOM_DATE, you can define a custom range of dates to extract. The
definition must be a dictionary with min and max values. In both you can use relative dates with Filenames
templating.

• client_customer_id. Id or list of ids of adwords customers, whose data you want in the report.

Example of adwords query:

{
"name": "some_adwords_report",
"type": "adwords",
"date_range": {"min": "{Y-1d}{m-1d}{d-1d}", "max": "{Y-1d}{m-1d}{d-1d}"},
"client_customer_ids": "123-456-7890",
"report_definition": {
"reportName": "Shopping Performance Last Month",
"dateRangeType": "CUSTOM_DATE",
"reportType": "SHOPPING_PERFORMANCE_REPORT",
"downloadFormat": "CSV",
"selector": {

"fields": [
"AccountDescriptiveName",
"CampaignId",
"CampaignName",
"AdGroupName",
"AdGroupId",
"Clicks",
"Impressions",
"AverageCpc",

(continues on next page)

16 Chapter 4. Documentation Contents

https://github.com/googleads/googleads-python-lib/
https://developers.google.com/adwords/api/docs/guides/start
https://developers.google.com/adwords/api/docs/guides/start
http://googleads.github.io/googleads-python-lib/googleads.adwords.ReportDownloader-class.html#DownloadReport
https://developers.google.com/adwords/api/docs/guides/reporting#date_ranges
https://support.google.com/adwords/answer/29198?hl=en

laika Documentation, Release 1.4.0

(continued from previous page)

"Cost",
"ConvertedClicks",
"CrossDeviceConversions",
"SearchImpressionShare",
"SearchClickShare",
"CustomAttribute1",
"CustomAttribute2",
"Brand"

]
}

},
"results": [

]
}

4.2.8 Facebook Insights

type: facebook. Retrieves the data from the Facebook’s Insights API. The report is requested as asynchronous
job and is polled for completion every few seconds.

Configuration:

• profile: Name of profile to use. Credentials file must contain access token with at least read_insights
permission. You can generate it in Facebook’s developers panel for you app. Example facebook credentials:

{
"access_token": "..."

}

• object_id: Facebook’s object id from which you want to obtain the data.

• params: Set of parameters that will be added to the request. Check the example report to know what values are
used by default, consult Facebook’s Insights API documentation to discover what parameters you can use.

• sleep_per_tick: Number of seconds to wait between requests to Facebook API to check if the job is finished.

• since: Starting date for a custom date range. Will only be used if date_preset, time_range or
time_ranges are not present among report parameters. You can set relative dates using Filenames tem-
plating.

• until: Same as since, but for the ending date.

Example of facebook report:

{
"name": "my_facebook_insights_report",
"type": "facebook",
"profile": "my_facebook_profile",
"object_id": "foo_1234567890123456",
"since": "{Y-1d}-{m-1d}-{d-1d}",
"until": "{Y-1d}-{m-1d}-{d-1d}",
"params": {

"level": "ad",
"limit": 10000000,
"filtering": "[{\"operator\": \"NOT_IN\", \"field\": \"ad.effective_status\",

→˓\"value\": [\"DELETED\"]}]",
(continues on next page)

4.2. Reports 17

https://developers.facebook.com/docs/marketing-api/insights
https://developers.facebook.com/docs/marketing-api/insights/best-practices/#asynchronous
https://developers.facebook.com/docs/marketing-api/insights/best-practices/#asynchronous

laika Documentation, Release 1.4.0

(continued from previous page)

"fields": "impressions,reach",
"action_attribution_windows": "28d_click"

},
"results": [
]

}

4.2.9 RTBHouse

type: rtbhouse. Downloads marketing costs report from RTBHouse API. Reported campaigns (advertisers)
are all those created by the account.

Configuration:

• profile: Name of profile to use. Credentials must be a json containing username and password fields.

• day_from: Starting date for the period to retrieve costs for. You can set a relative date using Filenames templat-
ing.

• day_to: Same as day_from, but for the ending date.

• group_by and convention_type: Optional parameters to send to RTBHouse.

• campaign_names: Mapping from campaign hash to a readable name for the resulting report.

• column_names: Mapping to rename columns in the resulting report.

Example of rtbhouse report:

{
"name": "my_rtbhouse_report",
"type": "rtbhouse",
"profile": "my_rtbhouse_profile",
"group_by": "day",
"convention_type": "ATTRIBUTED",
"day_from": "{Y-1d}-{m-1d}-{d-1d}",
"day_to": "{Y-1d}-{m-1d}-{d-1d}",
"campaign_names": {
"1234567890": "Some readable campaign name"

},
"column_names": {
"hash": "CampaignID",
"name": "Campaign",
"campaignCost": "Cost",
"day": "Date"

},
"results": [

]
}

4.2.10 Rakuten

type: rakuten. Downloads a report from Rakuten marketing platform by name.

Configuration:

18 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

• profile: Name of profile to use. Credentials must be a json containing token key, with a token to access
Rakuten API.

• report_name: Existing report to download from the platform.

• filters: A set of filters to send to the API. Must be a dictionay, you can use Filenames templating on the values.

Example of rakuten report:

{
"name": "my_rakuten_report",
"type": "rakuten",
"profile": "my_rakuten_profile",
"report_name": "some-report",
"filters": {
"start_date": "{Y-10d}-{m-10d}-{d-10d}",
"end_date": "{Y-1d}-{m-1d}-{d-1d}",
"include_summary": "N",
"date_type": "transaction"

}
}

4.2.11 BingAds

Note: To use bingads report you must install bingads dependency: pip install laika-lib[bingads]

type: bingads. Downloads reports from Microsoft Ads portal using Bingads SDK. The configurations are:

• profile: Name of profile to use. Credentials file must be a a .json containing client_id,
developer_token, state and refresh_token. Find more about authentication here.

• customer_id and account_id: IDs of accounts you want to authenticate for. You can see how to obtain these IDs
in this part of documentation.

• report_request_type: Report request data object. You can see all the available data object here.

• start_date and end_date: you can define a period for the data you want. These fields are templated via Filenames
templating.

• predefined_time: in case you don’t specify start_date and end_date, you can set a predefined_time. Default
value is “Yesterday”

BingAds report accepts more parameters, you can see examples in Microsoft’s documenentation and verify which of
the parameters laika accepts checking source code.

Example of BingAds report:

{
"name": "bingads_keyword_performance",
"type": "bingads",
"profile": "my_bingads_profile",
"customer_id": 1234567,
"report_request_type": "KeywordPerformanceReportRequest",
"report_account_ids": [1234567, 2345678],
"report_columns": [

"TimePeriod",
"AccountId",
"CampaignId",

(continues on next page)

4.2. Reports 19

https://docs.microsoft.com/en-us/advertising/guides/authentication-oauth?view=bingads-13
https://docs.microsoft.com/en-us/advertising/guides/get-started?view=bingads-13#get-ids
https://docs.microsoft.com/en-us/advertising/reporting-service/reporting-data-objects
https://docs.microsoft.com/en-us/advertising/guides/code-example-report-requests?view=bingads-13

laika Documentation, Release 1.4.0

(continued from previous page)

"CampaignName",
"Keyword",
"DeviceType",
"Network",
"Impressions",
"Clicks",
"Spend",
"BidMatchType",
"Ctr",
"AverageCpc",
"QualityScore"

],
"start_date": "{Y}-{m}-{d}",
"end_date": "{Y}-{m}-{d}"

}

4.2.12 Module

type: module. Allows you to use a python module with custom report class to obtain the data. This module
will be loaded dynamically and executed. Currently it has the same configuration as the module result, which can be
confusing.

Configuration:

• result_file: Path to python file.

• result_class: Name of the class to use as result inside the python file. This class must inherit Report class and
define process method, which should normally return report data. Simple example of a custom report class:

from laika.reports import Report

class FooResult(Report):

def process(self):
using some custom configs
filename = self.custom_filename
returning some data
with open(filename) as f:

return do_stuff(f.read())

This report will be executed as any other report - it will have available all the extra configuration you define.

Warning: This report will load and execute arbitrary code, which implies a series of security holes. Always check
custom modules before using them.

Example of a module report definition:

{
"type": "module",
"result_file": "./some_folder/my_custom_report.py",
"result_class": "MyReport",
"my_custom_config": "value"

}

20 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

4.3 Results

Results are defined for each report in a list. Each result is an object, that must define type field. The rest of the fields
depend on the type of result. Below are described all the supported results.

Note: Results will be executed in the same order they are defined. If the first one raises an exception, the execution
will be suspended (the next ones will not execute).

4.3.1 File

type: file. This result will save the data as a file. The configurations for this result are:

• filename: path to the file. Depending on the file extension this file will be saved as excel (xls or xlsx), tsv or csv.

• encoding: Defaults to “utf-8”.

• index: Write index. true by default.

• header: Write column names. true by default.

• extra_args: Extra arguments for to_csv or to_excel not covered above.

Example of a file result:

"result": {
"type": "file",
"filename": "output.xlsx",
"index": false,
"header": false,
"extra_args": {"sheet_name": "Very Important Sheet", "start_row": 3}

}

4.3.2 Email

type: email. Sends the data as an attachment in an email. Configurations for this result are:

• connection: Name of a connection with type email.

• profile: Profile name to use. Credentials from this profile must have username and password field from
smtp service you will use.

• filename: name of the file to attach.

• recipients: one or more recipients for the email. Can be a string with one recipient or a list of recipients. This
camp is required.

• subject: subject of the email.

• body: text the email will contain.

• attachments: Optional. list of files to attach to the email. Must be a list of paths to files.

Subject and body can be formatted the same way filenames are formatted. You can find more about it in Filenames
templating. Example of email result:

4.3. Results 21

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.html

laika Documentation, Release 1.4.0

{
"type": "email",
"filename": "report_{Y}-{m}-{d}_{H}-{M}.xlsx",
"recipients": ["some_recipient@mail.com", "another_recipient@foo.com"],
"subject": "Some report",
"body": "Report generated {Y}-{m}-{d} {H}:{M}. \nDo not reply this email!",
"profile": "my_gmail",
"connection": "gmail_smtp"

}

4.3.3 Ftp

type: ftp. Uploads the data to a ftp server. Configurations for this result are:

• profile: Name of the profile to use. Credentials must have username and password fields to authenticate in
the ftp service.

• connection: Name of a connection of ftp type.

• filename: Name with which the file will be uploaded to ftp.

Example of ftp result:

{
"type": "ftp",
"profile": "my_ftp_profile",
"connection": "some_ftp",
"filename": "my_report.csv"

}

4.3.4 Google Drive

Note: To use drive result you must install drive dependency: pip install laika-lib[drive]

type: drive. Saves report data in Google Drive. These are the configurations:

• profile: Name of the profile to use. Credentials of this profile must be ones of a service account with access to
Google Drive API.

• filename: Name for the resulting file.

• folder: Directory in which the file will be stored. If not specified, the file is stored in the root of given drive.
If there is more than one directory with the same name, the file will be stored in the first one this result finds
(depends on Drive API).

• folder_id: Id of the directory in which the result will be saved. If specified, folder configuration will be ignored.
You can get this id from the url in Google Drive web interface.

• drive_id: shared drive’s id in case file will be uploaded to a shared drive.

• grant: Email of user, in the name of whom the file will be uploaded. Must have access to specified folder.

• mime_type: Media type of the file to be uploaded. If none is specified it will take the type of the filename
extension.

22 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

• start_timeout, max_timeout, retry_status_codes: drive API calls sometimes fail with 500 errors. To work around
this behaviour, in case of error the call is retried after waiting start_timeout (2 by default) seconds, doubling
the waiting time after each error until reaching max_timeout (300 by default). If the error persists after that, the
exception will be raised. retry_status_codes is a list of extra status codes to retry after, [429] by default (429
is “too many requests”).

Example of drive result:

{
"type": "drive",
"profile": "my_service_drive_account",
"filename": "report.xlsx",
"folder": "TestFolder",
"grant": "me@mail.com"

}

4.3.5 Amazon S3

Note: To use S3 result you must install s3 dependency: pip install laika-lib[s3]

type: s3. Saves the result in Amazon S3.

Configuration:

• profile: Name of profile to use (laika profile, no to confuse with aws profiles). Credentials file of the specified
profile must contain data to be passed to Session constructor. Example of a minimal aws credentials file for
laika:

{
"aws_access_key_id": "my key id",
"aws_secret_access_key": "my secret access key"

}

• bucket: s3 bucket in which you want to save your data.

• filename: Name of the file to save. This config is the key of the file in bucket.

Example of s3 result:

{
"type": "s3",
"profile": "my_aws_profile",
"bucket": "some.bucket",
"filename": "reports/custom_report.csv"

}

4.3.6 SFTP

type: sftp. Uploads the data to a SFTP server. Configurations for this kind of result are:

• profile: Name of the profile to use. Credentials must have username and optionally password fields and/or
private_key to authenticate in the SFTP service. private_key should be a path to a file with the private
key.

• connection: Name of a connection of ftp type.

4.3. Results 23

http://boto3.readthedocs.io/en/latest/reference/core/session.html#boto3.session.Session

laika Documentation, Release 1.4.0

• folder: Folder in which the file will be saved. Can be a unix style path.

• filename: Name with which the file will be uploaded to ftp.

Example of SFTP result:

{
"type": "sftp",
"profile": "my_sftp_profile",
"connection": "some_sftp",
"folder": "./some_folder/",
"filename": "my_report.csv"

}

4.3.7 Redash

type: redash. Saves the data as json file in format which redash understands. You can then expose it to redash
via API, redash will be able to consume it using url datasource. Configuration has the same fields as File result, with
the exception of the fact that the file must be json (it will be saved as json, regardless of the extension).

4.3.8 Fixed Columnar Result

type: fixed. Wrapper result that ensures the presence of a list of columns in the data before sending them to
an inner result. Columns not present in the data will be added. Can only be used with reports that return a pandas.
DataFrame as result (or some data structure accepted by DataFrame’s constructor). All the configuration keys,
besides ones this result defines, will be passed to the inner result. Can be useful if you need to adapt the data to some
external format (i.e. Hive schema).

Configuration:

• columns: List of columns to leave in the data, in the order you want them to appear for the inner result.

• inner_result_type: Type of result to use after fixing the data.

• default_value: This value will be used to fill missing columns with (np.nan by default).

Example of fixed columnar result:

{
"type": "fixed",
"columns": ["id", "date", "action", "value", "missing_column"],
"default_value": "value_to_fill_missing_column_with",
"inner_result_type": "file",
"filename": "resulting_output.csv"

}

As you can see in the example, you define both configurations for the fixed columnar result, and the result it wraps (in
this case a file result, with it’s corresponding filename). Only the columns defined in the configuration will be passed
to the inner result.

4.3.9 Partitioned Result

type: partitioned. Wrapper result that partitions incoming data using one of it’s columns as a partition key.
For each obtained partition an inner result will be executed, with the data corresponding to the partition. The partition
key is passed to each inner result via partition_group variable, that can be used in templates (see more in
Filenames templating). This result can only be used with reports that return a pandas.DataFrame (or some data

24 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

structure accepted by DataFrame’s constructor). All the configuration keys, besides ones this result defines, will be
passed to the inner result.

Configuration:

• partition_key: Name of the column to use as partition key. This field is required.

• partition_date_format: Optional, if defined, partition key will be converted to a string with the provided
format. Partition key must have datetime type, or be convertable to datetime trough pandas.to_datetime.
The format must follow Python’s datetime.strftime guidelines.

• inner_result_type: Type of result to for inner results.

Example of partitioned result:

{
"type": "partitioned",
"partition_key": "my_date",
"partition_date_format": "%Y-%m",
"inner_result_type": "file",
"filename": "report_{partition_group}.csv"

}

In this example, the incoming data will be partitioned by “my_date” column, previously converted to YYYY-MM
format (which will fail if “my_date” column is not a date or datetime, nor it is directly convertable to one). Each of
the resulting partitions will be saved in a separate file. So if, for example, “my_date” has dates in April and in May of
2019, this example will result in two files, report_2019-04.csv and reports_2019-05.csv.

4.3.10 Module

type: module. Allows you to use a python module with custom result class to save the data. This module will
be loaded dynamically and executed.

Configuration:

• result_file: Path to python file.

• result_class: Name of the class to use as result inside the python file. This class must inherit Result class and
define save method. Simple example of a custom result class:

from laika.reports import Result

class FooResult(Result):

def save(self):
using some custom configs
filename = self.custom_filename
doing the actual save
print str(self.data)

This result will be executed as any other result - it will have available all the extra configuration you define.

Warning: this result will load and execute arbitrary code, which implies a series of security holes. Always check
custom modules before using them.

Example of a module result definition:

4.3. Results 25

http://pandas.pydata.org/pandas-docs/version/0.19.2/generated/pandas.to_datetime.html
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

laika Documentation, Release 1.4.0

{
"type": "module",
"result_file": "./some_folder/my_custom_result.py",
"result_class": "MyResult",
"my_custom_config": "value"

}

4.4 Reports templating

In query definitions (or other templates inside laika) you can specify dynamic dates this way:

select * from some_table where date >= '{m}' and date < '{m+1m}'

laika will replace this dates by (supposing current month is February of 2016):

select * from some_table where date >= '2016-02-01 00:00:00' and date < '2016-03-01
→˓00:00:00'

Dates are UTC by default, but you can modify that changing timezone configuration.

These are all the template variables you can use:

• {now}: current date.

• {d} o {t}: start of current date (00:00:00 of today)

• {m}: start of first day of current month

• {y}: start of current year (first day of January)

• {H}: start of current hour

• {M}: start of current minute

• {w}: start of current week (Monday)

These variables may also receive modifiers. Modifier expression must start with one of these variables, continue with
a sign (+ o -), a number and finally, a measure. This measures can be:

• {y}: years

• {m}: months

• {d}: days

• {h}: hours

• {M}: minutes

• {w}: weeks

For example:

{now}, {now-1d}, {now+1y}, {now+15h}, {t-3m}

Results in:

2016-02-12 18:19:09, 2016-02-11 18:19:09, 2017-02-12 18:19:09, 2016-02-13 09:19:09,
→˓2015-11-12 00:00:00

26 Chapter 4. Documentation Contents

laika Documentation, Release 1.4.0

Another possibility is to specify a start of week with {f}. For example, {d-1f} will move the date to Monday of
the current week, and {d+2f} will move the date to Monday within two weeks.

4.4.1 Query templating

If the report has a dictionary of variables specified they will be replaced in the specified query file. For example, if you
define a query like this:

select something from some_table where type = '{my_type}'

You can then pass the variables through configuration this way:

{
"variables": {
"my_type": "some custom type"

}
}

The query that will end up executing is this:

select something from some_table where type = 'some custom type'

These variables will be replaced first, and then laika will replace the dates, so you can define in your configuration
variables like this:

{
"variables": {
"yesterday": "{t-1d}"

}
}

{yesterday} will be converted into 2016-02-12 17:19:09.

4.4.2 Filenames templating

filename configuration in all the reports and results can be formatted in a similar way. For example, if you specify:

{
"filename": "report_{Y}-{m}"

}

This will be formatted as report_2016-02 (assuming the report ran in February of 2016).

You can also use the same modifiers:

{
"filename": "report_{Y}-{m-1m}"

}

Will result in report_2016-01.

Two extra parameters you can use in this type of templating are a and A. They will be replaced by abbreviated and full
weekday name respectively (i.e. “Mon” and “Monday”).

4.4. Reports templating 27

	Installation
	Usage
	Arguments

	Testing
	Documentation Contents
	Configuration
	Reports
	Results
	Reports templating

